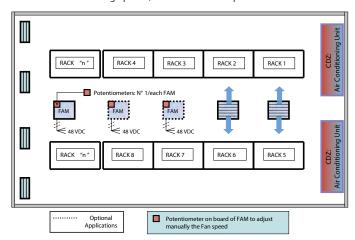


VENTILATED FLOOR GRID FAM 3000 PV - 48 VDC

Fig. 1 - Typical application of FAM 3000 PV


Fig. 2 - Layout of Mobile Room - Air Circuit

Example: application of n° 5 Unit FAM 3000PV, installed under the raised floor. N.B. Quantity and position of Grilles and FAM must be defined in the design phase, as a function of required air flow.

Warm air corridor | By-Pass | RACK 9 | RACK 5 |

Fig. 3a - Layout of FAM electrical connections with Potentiometer

Example: application of n° 5 Unit FAM 3000PV, installed under the raised floor. N.B. Quantity and position of Grilles and FAM must be defined in the design phase, as a function of required air flow.

Fig. 3a - Layout of FAM electrical connections with Microprocessor

(Interconnections with modulating signal 0 - 10 VDC to regulate the fan speed)

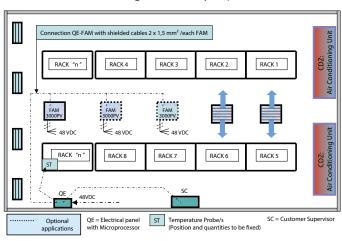
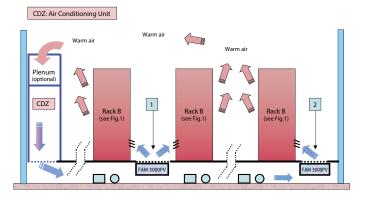
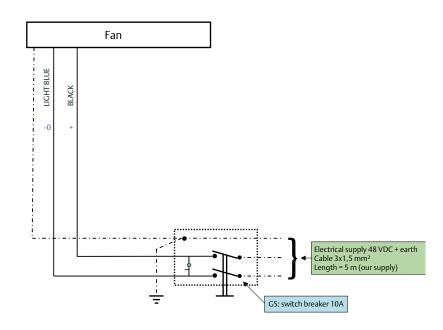



Fig. 4 - Different grilles application for FAM 3000 PV

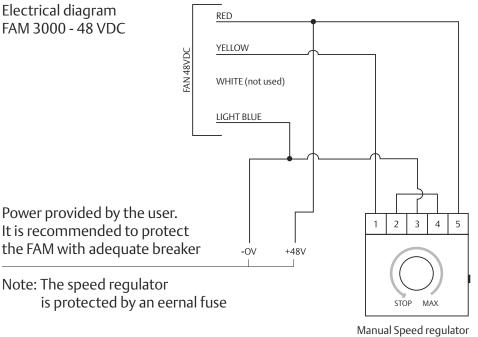
The module is placed always under a raised floor in a horizontal position. The air, supplied by the air conditioner (Fig. 1 and 4) after being treated, is conveyed under floor and, by the FAM, to the Users (Racks)

Description of FAM 3000 PV


The module is made by a structure of sheet steel, oven painted that includes:

- a) **Axial fan**, directly coupled to a variable speed motor (0-10 VDC) to obtain heads and flow rates suitable for the application in place. It is equipped with internal thermal protection, with automatic reset, that intervenes in case of malfunctions of ventilator.
- b) Air supply through grilles placed above the safety net fixed to the FAN.
- c) Air intake, through perforated protective plate located under the FAN.

TECHNICAL CHARACTERISTICS OF FAM 3000 PV - 48 VDC


Characteristics	Unit of measure	Value	
Nominal Air flow (at 21 °C, density = 1.2 kg/m³)	m³ / h	3000	
Fan speed at nominal air flow	rpm	1830	
Available head pressure at nominal air flow	Pa	100	
Axial Fan	N°	1	
Electric Supply (VAC +/- 10%) (EN 60204 - 1)	VDC	48	
Control of: Speed / Head pressure / Air flow	VDC	36 - 57	
Max Operative Power input (at 3000 mc/h - 190 Pa)	W	80	
Max Electric absorption FLA (at 3000 mc/h - 190 Pa)	А	1,9	
Weight (without grilles)	kg	18,5	
Limits of use: Temp. (with protection IP 44)	min max.°C	-25 °C /+60 °C	

Electrical Diagram FAM 3000PV / 48-VDC + earth

OPTIONAL

Electrical diagram FAM 3000 - 48 VDC

Fan speed Regulator

Fan speed regulator

At the potentiometric command for adjusting voltage is slaved a switch which stops the power. With a trimmer you can adjust the minimum value the speed or power. The trimmer is accessible from the outside. with screwdriver.

FAN SPEED REGULATOR

Connection V+ / V-				
	Voltage	V+/V-	36÷52 VDC	
Connection IN / V-				
	Minimum (*)	VMIN	0÷5 VDC	
	Regulation Voltage (*)	IN/V-	Vmin÷10 VDC	
	Output impedance	RIN	5 kOhm max	
	STOP function		Opened	

(*) NOTE

Voltage value are referred to no load present to IN / V-